Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 87: 102342, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428224

RESUMO

Lipid droplets (LDs), once considered mere storage depots for lipids, have gained recognition for their intricate roles in cellular processes, including metabolism, membrane trafficking, and disease states like obesity and cancer. This review explores label-free imaging techniques' applications in LD research. We discuss holotomography and vibrational spectroscopic microscopy, emphasizing their potential for studying LDs without molecular labels, and we highlight the growing integration of artificial intelligence. Clinical applications in disease diagnosis and therapy are also considered.


Assuntos
Inteligência Artificial , Gotículas Lipídicas , Gotículas Lipídicas/metabolismo , Microscopia , Metabolismo dos Lipídeos
2.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961564

RESUMO

Membrane potential is a property of all living cells1. However, its physiological role in non-excitable cells is poorly understood. Resting membrane potential is typically considered fixed for a given cell type and under tight homeostatic control2, akin to body temperature in mammals. Contrary to this widely accepted paradigm, we found that membrane potential is a dynamic property that directly reflects tissue density and mechanical forces acting on the cell. Serving as a quasi-instantaneous, global readout of density and mechanical pressure, membrane potential is integrated with signal transduction networks by affecting the conformation and clustering of proteins in the membrane3,4, as well as the transmembrane flux of key signaling ions5,6. Indeed, we show that important mechano-sensing pathways, YAP, Jnk and p387-121314, are directly controlled by membrane potential. We further show that mechano-transduction via membrane potential plays a critical role in the homeostasis of epithelial tissues, setting tissue density by controlling proliferation and cell extrusion of cells. Moreover, a wave of depolarization triggered by mechanical stretch enhances the speed of wound healing. Mechano-transduction via membrane potential likely constitutes an ancient homeostatic mechanism in multi-cellular organisms, potentially serving as a steppingstone for the evolution of excitable tissues and neuronal mechano-sensing. The breakdown of membrane potential mediated homeostatic regulation may contribute to tumor growth.

3.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37808635

RESUMO

In all growing cells, the cell envelope must expand in concert with cytoplasmic biomass to prevent lysis or molecular crowding. The complex cell wall of microbes and plants makes this challenge especially daunting and it unclear how cells achieve this coordination. Here, we uncover a striking linear increase of cytoplasmic pressure with growth rate in E. coli. Remarkably, despite this increase in turgor pressure with growth rate, cellular biomass density was constant across a wide range of growth rates. In contrast, perturbing pressure away from this scaling directly affected biomass density. A mathematical model, in which endopeptidase-mediated cell wall fluidization enables turgor pressure to set the pace of cellular volume expansion, not only explains these confounding observations, but makes several surprising quantitative predictions that we validated experimentally. The picture that emerges is that changes in turgor pressure across growth rates are mediated by counterions of ribosomal RNA. Profoundly, the coupling between rRNA and cytoplasmic pressure simultaneously coordinates cell wall expansion across growth rates and exerts homeostatic feedback control on biomass density. Because ribosome content universally scales with growth rate in fast growing cells, this universal mechanism may control cell wall biosynthesis in microbes and plants and drive the expansion of ribosome-addicted tumors that can exert substantial mechanical forces on their environment.

4.
Clin Exp Med ; 23(7): 3821-3832, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37421589

RESUMO

Multiple myeloma (MM) is a cancer of terminally differentiated plasma cells. MM remains incurable, but overall survival of patients has progressively increased over the past two decades largely due to novel agents such as proteasome inhibitors (PI) and the immunomodulatory agents. While these therapies are highly effective, MM patients can be de novo resistant and acquired resistance with prolonged treatment is inevitable. There is growing interest in early, accurate identification of responsive versus non-responsive patients; however, limited sample availability and need for rapid assays are limiting factors. Here, we test dry mass and volume as label-free biomarkers to monitor early response of MM cells to treatment with bortezomib, doxorubicin, and ultraviolet light. For the dry mass measurement, we use two types of phase-sensitive optical microscopy techniques: digital holographic tomography and computationally enhanced quantitative phase microscopy. We show that human MM cell lines (RPMI8226, MM.1S, KMS20, and AMO1) increase dry mass upon bortezomib treatment. This dry mass increase after bortezomib treatment occurs as early as 1 h for sensitive cells and 4 h for all tested cells. We further confirm this observation using primary multiple myeloma cells derived from patients and show that a correlation exists between increase in dry mass and sensitivity to bortezomib, supporting the use of dry mass as a biomarker. The volume measurement using Coulter counter shows a more complex behavior; RPMI8226 cells increase the volume at an early stage of apoptosis, but MM.1S cells show the volume decrease typically observed with apoptotic cells. Altogether, this cell study presents complex kinetics of dry mass and volume at an early stage of apoptosis, which may serve as a basis for the detection and treatment of MM cells.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Dano ao DNA , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose
5.
Biomed Res Int ; 2018: 7383869, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581865

RESUMO

Hibiscus syriacus L. (Malvaceae) is an important ornamental shrub in horticulture and has been widely used as a medical material in Asia. The aim of this study was to assess the antidepressant and neuroprotective effects of a root bark extract of H. syriacus (HSR) and to investigate the underlying molecular mechanisms. Using an animal model of restraint stress, we investigated the effects of HSR on depressive-like behaviors and on the expression levels of serotonin, corticosterone, and neurotrophic factors in the brain. The mice were exposed to restraint stress for 2 h per day over a period of 3 weeks and orally treated with HSR (100, 200, or 400 mg/kg/day). We also examined the neuroprotective effect of HSR using corticosterone-treated human neuroblastoma SK-N-SH cells. The cells were incubated with the extract for 24 h, followed by corticosterone stimulation for 1 h, and then cell viability assay, cellular ATP assay, mitochondrial membrane potential (MMP) assay, cellular reactive oxygen species (ROS) assay, and western blotting were used to investigate the neuroprotective effects of HSR. Administration of HSR not only reduced the immobility times of the restraint-stressed mice in the forced swimming and tail suspension tests, but also significantly increased sucrose preference in the sucrose preference test. In addition, HSR significantly reduced the plasma levels of corticosterone and increased the brain levels of serotonin. The extract also increased the phosphorylation level of cyclic AMP response element-binding (CREB) protein and the expression level of brain-derived neurotrophic factor (BDNF). The in vitro assays showed that HSR pretreatment increased cell viability and ATP levels, recovered MMP, decreased ROS levels, and increased the expression of CREB and BDNF in corticosterone-induced neurotoxicity. Taken together, our data suggest that HSR may have the potential to control neuronal cell damage and depressive behaviors caused by chronic stress.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Hibiscus/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Corticosterona/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Etanol/química , Elevação dos Membros Posteriores/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Casca de Planta/química , Raízes de Plantas/química , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Natação/fisiologia
6.
Genes Genomics ; 40(11): 1237-1248, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30032481

RESUMO

INTRODUCTION: Cellulose microfibril is a major cell wall polymer that plays an important role in the growth and development of plants. The gene cellulose synthase A (CesA), encoding cellulose synthases, is involved in the synthesis of cellulose microfibrils. However, the regulatory mechanism of CesA gene expression is not well understood, especially during the early developmental stages. OBJECTIVE: To identify factor(s) that regulate the expression of CesA genes and ultimately control seedling growth and development. METHODS: The presence of cis-elements in the promoter region of the eight CesA genes identified in flax (Linum usitatissimum L. 'Nike') seedlings was verified, and three kinds of ethylene-responsive cis-elements were identified in the promoters. Therefore, the effect of ethylene on the expression of four selected CesA genes classified into Clades 1 and 6 after treatment with 10-4 and 10-3 M 1-aminocyclopropane-1-carboxylic acid (ACC) was examined in the hypocotyl of 4-6-day-old flax seedlings. RESULTS: ACC-induced ethylene either up- or down-regulated the expression of the CesA genes depending on the clade to which these genes belonged, age of seedlings, part of the hypocotyl, and concentration of ACC. CONCLUSION: Ethylene might be one of the factors regulating the expression of CesA genes in flax seedlings.


Assuntos
Aminoácidos Cíclicos/farmacologia , Etilenos/metabolismo , Linho/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Linho/efeitos dos fármacos , Linho/crescimento & desenvolvimento , Linho/metabolismo , Glucosiltransferases/classificação , Glucosiltransferases/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Regiões Promotoras Genéticas , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo
7.
J Cell Biol ; 211(4): 757-63, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26598613

RESUMO

Osmotic regulation of intracellular water during mitosis is poorly understood because methods for monitoring relevant cellular physical properties with sufficient precision have been limited. Here we use a suspended microchannel resonator to monitor the volume and density of single cells in suspension with a precision of 1% and 0.03%, respectively. We find that for transformed murine lymphocytic leukemia and mouse pro-B cell lymphoid cell lines, mitotic cells reversibly increase their volume by more than 10% and decrease their density by 0.4% over a 20-min period. This response is correlated with the mitotic cell cycle but is not coupled to nuclear osmolytes released by nuclear envelope breakdown, chromatin condensation, or cytokinesis and does not result from endocytosis of the surrounding fluid. Inhibiting Na-H exchange eliminates the response. Although mitotic rounding of adherent cells is necessary for proper cell division, our observations that suspended cells undergo reversible swelling during mitosis suggest that regulation of intracellular water may be a more general component of mitosis than previously appreciated.


Assuntos
Tamanho Celular , Mitose , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Endocitose , Camundongos , Membrana Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA